for questions or link request: module admin

Further Theorems of Propositional Calculus

name: prophilbert2, module version: 1.00.00, rule version: 1.02.00, orignal: prophilbert2, author of this module: Michael Meyling

Description

This module includes proofs of popositional calculus theorems. The following theorems and proofs are adapted from D. Hilbert and W. Ackermann s "Grundzuege der theoretischen Logik" (Berlin 1928, Springer)

Uses the following modules:

Is used by the following modules:


Negation of a conjunction:

1 Proposition
      (
Ø(P Ù Q) Þ (ØP Ú ØQ))     (hilb18)

Proof:

1 (ØØP Þ P) add proposition hilb6
2 (ØØ(ØP Ú ØQ) Þ (ØP Ú ØQ)) Subst Line1
3 (Ø(P Ù Q) Þ (ØP Ú ØQ)) reverse abbreviation and in 2 at occurence 1
qed


The reverse of a negation of a conjunction:

2 Proposition
      ((
ØP Ú ØQ) Þ Ø(P Ù Q))     (hilb19)

Proof:

1 (P Þ ØØP) add proposition hilb5
2 ((ØP Ú ØQ) Þ ØØ(ØP Ú ØQ)) Subst Line1
3 ((ØP Ú ØQ) Þ Ø(P Ù Q)) reverse abbreviation and in 2 at occurence 1
qed


Negation of a disjunction:

3 Proposition
      (
Ø(P Ú Q) Þ (ØP Ù ØQ))     (hilb20)

Proof:

1 (P Þ P) add proposition hilb2
2 (Ø(P Ú Q) Þ Ø(P Ú Q)) Subst Line1
3 (Ø(P Ú Q) Þ Ø(ØØP Ú Q)) ElementaryEquivalence in 2 with Reference "hilb5" and Reference "hilb6" at 8
4 (Ø(P Ú Q) Þ Ø(ØØP Ú ØØQ)) ElementaryEquivalence in 3 with Reference "hilb5" and Reference "hilb6" at 11
5 (Ø(P Ú Q) Þ (ØP Ù ØQ)) reverse abbreviation and in 4 at occurence 1
qed


Reverse of a negation of a disjunction:

4 Proposition
      ((
ØP Ù ØQ) Þ Ø(P Ú Q))     (hilb21)

Proof:

1 (P Þ P) add proposition hilb2
2 (Ø(P Ú Q) Þ Ø(P Ú Q)) Subst Line1
3 (Ø(ØØP Ú Q) Þ Ø(P Ú Q)) ElementaryEquivalence in 2 with Reference "hilb5" and Reference "hilb6" at 4
4 (Ø(ØØP Ú ØØQ) Þ Ø(P Ú Q)) ElementaryEquivalence in 3 with Reference "hilb5" and Reference "hilb6" at 7
5 ((ØP Ù ØQ) Þ Ø(P Ú Q)) reverse abbreviation and in 4 at occurence 1
qed


The Conjunction is commutative:

5 Proposition
      ((P
Ù Q) Þ (Q Ù P))     (hilb22)

Proof:

1 (P Þ P) add proposition hilb2
2 ((P Ù Q) Þ (P Ù Q)) Subst Line1
3 ((P Ù Q) Þ Ø(ØP Ú ØQ)) use abbreviation and in 2 at occurence 2
4 ((P Ù Q) Þ Ø(ØQ Ú ØP)) ElementaryEquivalence in 3 with Reference "hilb9" and Reference "hilb10" at 1
5 ((P Ù Q) Þ (Q Ù P)) reverse abbreviation and in 4 at occurence 1
qed


A technical lemma that is simular to the previous one:

6 Proposition
      ((Q
Ù P) Þ (P Ù Q))     (hilb23)

Proof:

1 ((P Ù Q) Þ (Q Ù P)) add proposition hilb22
2 ((Q Ù P) Þ (P Ù Q)) Subst Line1
qed


Reduction of a conjunction:

7 Proposition
      ((P
Ù Q) Þ P)     (hilb24)

Proof:

1 (P Þ (P Ú Q)) add axiom axiom2
2 (ØP Þ (ØP Ú ØQ)) Subst Line1
3 (Ø(ØP Ú ØQ) Þ ØØP) Apply Sentence Reference "hilb7" to line 2
4 ((P Ù Q) Þ ØØP) reverse abbreviation and in 3 at occurence 1
5 ((P Ù Q) Þ P) ElementaryEquivalence in 4 with Reference "hilb6" and Reference "hilb5" at 1
qed


Another form of a reduction of a conjunction:

8 Proposition
      ((P
Ù Q) Þ Q)     (hilb25)

Proof:

1 ((P Ù Q) Þ P) add proposition hilb24
2 ((Q Ù P) Þ Q) Subst Line1
3 ((P Ù Q) Þ Q) ElementaryEquivalence in 2 with Reference "hilb22" and Reference "hilb23" at 1
qed


The conjunction is associative too (first implication):

9 Proposition
      ((P
Ù (Q Ù A)) Þ ((P Ù Q) Ù A))     (hilb26)

Proof:

1 (((P Ú Q) Ú A) Þ (P Ú (Q Ú A))) add proposition hilb15
2 (Ø(P Ú (Q Ú A)) Þ Ø((P Ú Q) Ú A)) Apply Sentence Reference "hilb7" to line 1
3 (Ø(P Ú ØØ(Q Ú A)) Þ Ø((P Ú Q) Ú A)) ElementaryEquivalence in 2 with Reference "hilb5" and Reference "hilb6" at 5
4 (Ø(P Ú ØØ(Q Ú A)) Þ Ø(ØØ(P Ú Q) Ú A)) ElementaryEquivalence in 3 with Reference "hilb5" and Reference "hilb6" at 12
5 (Ø(ØP Ú ØØ(ØQ Ú ØA)) Þ Ø(ØØ(ØP Ú ØQ) Ú ØA)) Subst Line4
6 ((P Ù Ø(ØQ Ú ØA)) Þ Ø(ØØ(ØP Ú ØQ) Ú ØA)) reverse abbreviation and in 5 at occurence 1
7 ((P Ù (Q Ù A)) Þ Ø(ØØ(ØP Ú ØQ) Ú ØA)) reverse abbreviation and in 6 at occurence 1
8 ((P Ù (Q Ù A)) Þ (Ø(ØP Ú ØQ) Ù A)) reverse abbreviation and in 7 at occurence 1
9 ((P Ù (Q Ù A)) Þ ((P Ù Q) Ù A)) reverse abbreviation and in 8 at occurence 1
qed


The conjunction is associative (second implication):

10 Proposition
      (((P
Ù Q) Ù A) Þ (P Ù (Q Ù A)))     (hilb27)

Proof:

1 ((P Ú (Q Ú A)) Þ ((P Ú Q) Ú A)) add proposition hilb14
2 (Ø((P Ú Q) Ú A) Þ Ø(P Ú (Q Ú A))) Apply Sentence Reference "hilb7" to line 1
3 (Ø(ØØ(P Ú Q) Ú A) Þ Ø(P Ú (Q Ú A))) ElementaryEquivalence in 2 with Reference "hilb5" and Reference "hilb6" at 4
4 (Ø(ØØ(P Ú Q) Ú A) Þ Ø(P Ú ØØ(Q Ú A))) ElementaryEquivalence in 3 with Reference "hilb5" and Reference "hilb6" at 13
5 (Ø(ØØ(ØP Ú ØQ) Ú ØA) Þ Ø(ØP Ú ØØ(ØQ Ú ØA))) Subst Line4
6 ((Ø(ØP Ú ØQ) Ù A) Þ Ø(ØP Ú ØØ(ØQ Ú ØA))) reverse abbreviation and in 5 at occurence 1
7 (((P Ù Q) Ù A) Þ Ø(ØP Ú ØØ(ØQ Ú ØA))) reverse abbreviation and in 6 at occurence 1
8 (((P Ù Q) Ù A) Þ (P Ù Ø(ØQ Ú ØA))) reverse abbreviation and in 7 at occurence 1
9 (((P Ù Q) Ù A) Þ (P Ù (Q Ù A))) reverse abbreviation and in 8 at occurence 1
qed


Form for the conjunction rule:

11 Proposition
      (P
Þ (Q Þ (P Ù Q)))     (hilb28)

Proof:

1 (P Ú ØP) add proposition hilb4
2 ((ØP Ú ØQ) Ú Ø(ØP Ú ØQ)) replace proposition variable P by (ØP Ú ØQ) in 1
3 (ØP Ú (ØQ Ú Ø(ØP Ú ØQ))) Apply Sentence Reference "hilb15" to line 2
4 (P Þ (ØQ Ú Ø(ØP Ú ØQ))) reverse abbreviation impl in 3 at occurence 1
5 (P Þ (Q Þ Ø(ØP Ú ØQ))) reverse abbreviation impl in 4 at occurence 1
6 (P Þ (Q Þ (P Ù Q))) reverse abbreviation and in 5 at occurence 1
qed


Preconditions could be put together in a conjunction (first direction):

12 Proposition
      ((P
Þ (Q Þ A)) Þ ((P Ù Q) Þ A))     (hilb29)

Proof:

1 (P Þ P) add proposition hilb2
2 ((P Þ (Q Þ A)) Þ (P Þ (Q Þ A))) Subst Line1
3 ((P Þ (Q Þ A)) Þ (ØP Ú (Q Þ A))) use abbreviation impl in 2 at occurence 4
4 ((P Þ (Q Þ A)) Þ (ØP Ú (ØQ Ú A))) use abbreviation impl in 3 at occurence 4
5 ((P Þ (Q Þ A)) Þ ((ØP Ú ØQ) Ú A)) ElementaryEquivalence in 4 with Reference "hilb14" and Reference "hilb15" at 1
6 ((P Þ (Q Þ A)) Þ (ØØ(ØP Ú ØQ) Ú A)) ElementaryEquivalence in 5 with Reference "hilb5" and Reference "hilb6" at 8
7 ((P Þ (Q Þ A)) Þ (Ø(ØP Ú ØQ) Þ A)) reverse abbreviation impl in 6 at occurence 1
8 ((P Þ (Q Þ A)) Þ ((P Ù Q) Þ A)) reverse abbreviation and in 7 at occurence 1
qed


Preconditions could be put together in a conjunction (second direction):

13 Proposition
      (((P
Ù Q) Þ A) Þ (P Þ (Q Þ A)))     (hilb30)

Proof:

1 (P Þ P) add proposition hilb2
2 ((P Þ (Q Þ A)) Þ (P Þ (Q Þ A))) Subst Line1
3 ((ØP Ú (Q Þ A)) Þ (P Þ (Q Þ A))) use abbreviation impl in 2 at occurence 2
4 ((ØP Ú (ØQ Ú A)) Þ (P Þ (Q Þ A))) use abbreviation impl in 3 at occurence 2
5 (((ØP Ú ØQ) Ú A) Þ (P Þ (Q Þ A))) ElementaryEquivalence in 4 with Reference "hilb14" and Reference "hilb15" at 1
6 ((ØØ(ØP Ú ØQ) Ú A) Þ (P Þ (Q Þ A))) ElementaryEquivalence in 5 with Reference "hilb5" and Reference "hilb6" at 3
7 ((Ø(ØP Ú ØQ) Þ A) Þ (P Þ (Q Þ A))) reverse abbreviation impl in 6 at occurence 1
8 (((P Ù Q) Þ A) Þ (P Þ (Q Þ A))) reverse abbreviation and in 7 at occurence 1
qed


Absorbtion of a conjunction (first direction):

14 Proposition
      ((P
Ù P) Þ P)     (hilb31)

Proof:

1 ((P Ù Q) Þ P) add proposition hilb24
2 ((P Ù P) Þ P) replace proposition variable Q by P in 1
qed


Absorbtion of a conjunction (second direction):

15 Proposition
      (P
Þ (P Ù P))     (hilb32)

Proof:

1 ((P Ú P) Þ P) add proposition hilb11
2 (ØP Þ Ø(P Ú P)) Apply Sentence Reference "hilb7" to line 1
3 (ØØP Þ Ø(ØP Ú ØP)) Subst Line2
4 (P Þ Ø(ØP Ú ØP)) ElementaryEquivalence in 3 with Reference "hilb6" and Reference "hilb5" at 1
5 (P Þ (P Ù P)) reverse abbreviation and in 4 at occurence 1
qed


Absorbtion of identical preconditions (first direction):

16 Proposition
      ((P
Þ (P Þ Q)) Þ (P Þ Q))     (hilb33)

Proof:

1 ((P Þ (Q Þ A)) Þ ((P Ù Q) Þ A)) add proposition hilb29
2 ((P Þ (P Þ Q)) Þ ((P Ù P) Þ Q)) Subst Line1
3 ((P Þ (P Þ Q)) Þ (P Þ Q)) ElementaryEquivalence in 2 with Reference "hilb31" and Reference "hilb32" at 1
qed


Absorbtion of identical preconditions (second direction):

17 Proposition
      ((P
Þ Q) Þ (P Þ (P Þ Q)))     (hilb34)

Proof:

1 (((P Ù Q) Þ A) Þ (P Þ (Q Þ A))) add proposition hilb30
2 (((P Ù P) Þ Q) Þ (P Þ (P Þ Q))) Subst Line1
3 ((P Þ Q) Þ (P Þ (P Þ Q))) ElementaryEquivalence in 2 with Reference "hilb31" and Reference "hilb32" at 1
qed